
State of the Fuzz:
An Analysis of Black-Box Vulnerability Testing

Mohammad Ghasemisharif

University of Illinois at Chicago

mghas2@uic.edu

ABSTRACT
Black-box vulnerability testing is a favored behavioral and function-

ality testing for finding vulnerabilities when no internal information

regarding the system is available to the tester. Traditional black-

box fuzzers are oblivious to the state changes generated by random

and unexpected inputs which makes them not only inefficient, but

inept in testing stateful applications. On the other hand, modern

automated scanners have shifted towards guided input generation

using state-aware testing which aims to create input samples more

efficiently and estimate the state changes by utilizing the outputs

as a feedback mechanism. Similarly, differential black-box testing

techniques have taken state-aware approaches and evolutionary

input generation into account to limit the number of generated

inputs and increase the code-coverage.

This paper surveys three different black-box testing techniques,

aiming to present an organized overview of the approaches which

systematically improve automated black-box testing and differential

fuzzing. It first provides an overview of required preliminaries

and terminologies which are used throughout the paper. Next, it

highlights the challenges of each technique, the problems they

are aiming to solve as well as the proposed solutions and their

evaluation. Finally a discussion of current issues, limitations, and a

summary of future research direction are discussed.

1 INTRODUCTION
Modern web applications are built on top of intricate web tech-

nologies which are developed separately and pieced together. The

added complexity has largely increased the burden on developers

to prevent security bugs that are hard to detect, especially vulner-

abilities stem from semantic bugs. Due to the burden of manual

testing, automated testing tools are becoming an inevitable part

of software testing to prevent unwanted outcomes and associated

consequences resulting from unexpected inputs. In the realms of

software testing, automated black-box fuzzing has advantages over

white-box testing and automated code analysis, even though its lim-

ited perspective of application’s internal is restrictive. In particular,

black-box testing not only enables emulating the attackers point of

view, it is a requisite tool when the application source code is not

available. Moreover, white-box testing requires additional skill and

knowledge to analyze the code which makes it domain specific and

not adaptable to other applications (with different programming

languages) as opposed to black-box testing which only relies on

input/output analysis. Therefore, an efficient black-box fuzzer is

applicable to variety of applications as it is invariant to a particular

programming language or system.

While black-box testing has a simpler perspective and sepa-

rates users point of view from developers, they are generally in-

efficient [17]. Their inefficiency mainly originates from lack of

knowledge regarding the application’s internal state which leads

to generating a considerable amount of input samples for finding

a single bug. In fact, black-box scanners do not perform well in

detecting stored XSS [2] and modeling application semantic as well

as increasing observability might improve the detection of such

vulnerabilities [8]. The lack of knowledge encompasses the absence

of an oracle which defines the expected behavior (output) of the

application. Differential testing [18] is a well-known method for

filling the void of such oracle by testing functionality of similar pro-

grams as cross-referencing oracles. While numerous studies have

been conducted to increase observability of a black-box through

model inference techniques [12] [20] [7] [22] and differential test-

ing [21] [6], there is a trade off between domain dependency and

efficacy.

This paper aims to provide an insight into three different tech-

niques of improving black-box fuzzing.While each approach tackles

the problem differently, they are similar in terms of attempting to in-

crease observability (knowledge) by means of building a model in a

black-box setting. The crux of this paper revolves around black-box

testing, with a primary emphasis on providing details of how each

method infers a model. However, additional information regarding

grey-box testing is provided in Section 3.3 for comparison.

The rest of the paper is organized as follows: Section 2 introduces

terminology used throughout the paper. Section 3 describes three

methods of improving black-box fuzzers, followed by evaluation of

each technique. Section 4 provides a comparison of described tech-

niques and discusses their limitations. Finally, Section 5 concludes

the paper.

2 DEFINITIONS
This section aims to provide required preliminaries and necessary

terms for the discussion of subsequent sections.

Testing strategies. Three main type of strategies exist in applica-

tion testing and their use case can differ according to the testing

condition. In black-box testing, the system is viewed as a black-box

which information regarding the system internals and code struc-

ture is not available to the tester. However, the tester has enough

access to probe the system with queries and observe the outputs.

On the other hand, the application’s internal structure, processes

and functionalities are fully transparent in white-box testing. Even

though transparency yields a more accurate characterization of

bugs, it requires the tool to be domain-dependent and specific to

one framework. Finally, grey-box testing is a combination of both

prior techniques in which the tester is not completely oblivious to

application’s internal, but her knowledge is limited to application’s

functionalities i.e. application’s source code is not available but

its functionality is known. Black-box and grey-box testing have

gained wide popularity due to the unavailability of application’s

source code in real world scenarios. This paper primarily focuses

on black-box testing techniques.

Fuzz testing. Fuzzing is a software testing method which an auto-

mated program feeds the target application with a massive amount

of malformed and unexpected inputs, and then the application is

monitored in order to hopefully find potential software bugs. In

the scope of this paper, software bugs are classified in two main

categories: memory-related and semantic bugs. Typically, memory-

related bugs display explicit output which makes them easier to

find. In contrast, semantic bugs do not show clear incorrect behav-

ior or message and are harder to detect. Section 3.3 provides further

insight regarding semantic bugs and their corresponding testing

technique.

Input generation. Fuzzers can fall into different categories based

on their input generationmethodwhich can directly impact fuzzer’s

efficiency.Mutation-based [22] fuzzers generate inputs by mutating

existing input samples. Generation-based [22] fuzzers learn the

models of input format and generate new inputs based on the

learned models. Evolutionary testing [19] follows a more efficient

approach, also known as guided testing or adaptive input generation,
that attempts to generate inputs using the output responses and

application’s behavior. In contrast, input generation in unguided
testing does not depend on the received output, nor the changes in

the application states.

Root cause analysis. Identifying the root cause of an observed

bug for further mitigation or exploit development. The difficulty

of such task depends on the information availability and testing

strategy (e.g. crash dumps in white-box testing).

Differential tesing. A testing method that feeds the same set of in-

puts to multiple test applications, which have similar functionalities

but different implementations, and looks for asymmetries between

their behaviors to find bugs [18]. In part, differential testing tries

to solve the problem of needing an oracle by using a series of sim-

ilar applications as cross-referencing oracles. Section 3.2 and 3.3

provide approaches, challenges and applications of this method.

Application fingerprinting. Uniquely identifying an application

(in a black-box experiment) based on its observed behavior. First, the

application’s unique feature set (behavior) is learned and mapped

to a fingerprint, and then during the identification process, if a

similar behavior is seen, the corresponding fingerprint is returned

as the potential application. Successful fingerprinting can reveal

sensitive information such as device type (e.g. firewall) or known

vulnerabilities.

Symbolic Finite Automata. Finite state machines where several

transitions from one state to the target state are combined and

replaced with a symbolic move (predicate). Predicates act as transi-

tion guards. An example of a Symbolic Finite Automaton is shown

in Figure 3. If the application can be modeled with SFA and the

alphabet size is very large (such as UTF-16), SFA outperform classi-

cal automata. The main SFA applications are regex processing and

sanitizer analysis [25]. While the output of SFA symbolic moves

are binary, for application with non-binary output, SFA can be ex-

tended to Symbolic Finite Transducers [11]. Formal definitions of

automata are provided in the Appendix.

Cross-site Scripting (XSS). A type of web application vulnerability

which enables an attacker to inject malicious scripts into a (trusted)

web application. The malicious script is then run in another user’s

browser once she visits the trusted web application without raising

suspicion [1]. One defense mechanism against XSS attacks is using

Web Application Firewall (WAF) [4]. As it is discussed in Section 3.2,

preventing evasion attacks against WAF is crucial since a single

logic error in the filter can eventually lead to code execution. Gen-

erally, the alphabet size in regex based filter (WAF) is large which

is problematic for a typical fuzzer. A solution to this problem is

explored in Section 3.2.

3 TESTING METHODOLOGIES
This section explores various applications of automated black-box

testing in web vulnerability scanners and differential testing. Each

subsection outlines a brief overview of the problem and its system-

atic improvement technique.

3.1 State-Aware Web Vulnerability Scanner
A web application is a stack of multi-layer technologies that are

developed separately and assembled. The complex nature of the

web has made the testing process more cumbersome, and the ap-

plication’s code less understandable. In fact, vulnerable applica-

tions are more complex and have a higher code churn than neutral

ones [23]. Thus, automated testing as a complementary technique

has become a crucial part of software testing. To facilitate the

testing process, a number of automated web vulnerability scan-

ners have been developed by academic community [14] [15] [16].

Nevertheless, due to the black-box nature of the server-side applica-

tions, the proposed solutions suffer from low accuracy and partial

code-coverage [12] [13]. Proposed technique by Doupé et al. [12]

overcomes this shortcoming by automatically inferring web appli-

cation’s internal state machine and understanding state changes to

maximize code-coverage.

3.1.1 Problem Description. A typical web application vul-

nerability scanner has two main parts, a crawler which interacts

and navigates between different pages/parts of the application and

a fuzzer that tests those visited parts. Interactions with a web ap-

plication can move its current state onto a different state and such

transitions cannot be captured by a navigation-based crawler, and

thus part of the web application remains completely untouched

by a navigation-based fuzzer. Consequently, it is necessary for the

crawler to be aware of application’s state given the opaqueness of

application’s internal structure. Such inference must be done by

only using requests and responses to and from the application. In

this section, application’s state refers to server-side code execution.

Figure 1 illustrates difference coverage in navigation-based and

state-aware crawler.

3.1.2 Inferring State Machine. Since the server-side code is
viewed as black-box, any modeled state machine must be inferred

by making HTTP requests and observing corresponding responses.

The proposed solution by [12] uses four components to determine

2

login.php index.php

view.php

S0 S1

index.php

login.php

index.php

view.php

Figure 1: Example of navigation graph (left) and applica-
tion’s state machine (right) [12]. As opposed to the navi-
gation graph, state machine captures the state transition
caused by login.php request.

state changes and learn a minimized state machine for a web appli-

cation.

Clustering similar pages. HTML pages are clustered based on

their link structure similarity in order to prevent infinite scanning

(e.g. calendar pages) as well as detect state changes. Each page

contains a set of links (anchors and forms) which acts as an in-

terface for interacting with the web application, hence navigat-

ing between page clusters provides further information regard-

ing the state change. First, page links are constructed in form

of ⟨dompath, action, params, values⟩ vectors and stored in a pre-

fix tree. Each prefix tree represents one page with multiple links

which each link (vector) starts from the root and ends in a leaf

node. Next, prefix trees are merged together based on their sim-

ilarities to form an Abstract Page Tree (APT). Similarity measure-

ment in APT is based on the number of shared elements from

the beginning of link vectors (at each level of prefix tree). Finally,

APT’s subtrees are merged together to form an Abstract Page.
Page links in each Abstract Page (subtree of depth n) share sim-

ilar dompaths, have greater number of leaves than the median of

their siblings, and have at least 8 ×

(
1 + 1

n+1

)
leaves. In case

of HTTP redirection, a special redirect element is considered for

HTTP redirects and the location (target) URL is assigned for its

value. An example vector representation of an anchor tag with href
of /user/profile.php?id=0&page is ⟨/html/body/div/span/a,
(/user,profile.php),(id,page),(0)⟩. Figure 2 shows the cor-
responding prefix tree and Abstract Page Tree.

Detecting state changing request. To an external observer of a

black-box web application, if two identical requests generate differ-

ent responses, the state of the application must have changed. In

order to locate the request which has altered the state, a heuristic

approach rates HTTP requests between these two identical requests.

Suppose R and R′ are two identical requests which R′ ≺ R. The
following score function calculates the score of each request (i)
between R and R′:

Score(ni,transit ion ,ni,seen ,distancei)=1−

(
1−
ni,transit ion+1

ni,seen+1

)
2

+
BOOSTi

distancei+1

The score function operates based on the number of times request

i: caused a state transition (ni,transit ion), has been seen (ni,seen),
and the aggregate number of requests between i and R (distancei).
The variable BOOSTi is 0.2 and 0.1 for POST and GET requests re-

spectively because POST requests are more probable to alter a state.

Finally, the candidate request that maximizes the score function is

returned as the request which has changed the state.

Collapsing of similar states. Similar states in the inferred model

must be collapsed to not only minimize the state machine, but also

detect transition to a previously visited state. This problem can be

addressed using a graph coloring approach. At first, all states are

unique. Next, edges are placed between separate states using the

information of previously collected state changing requests and

page clusters. Two separate states are colored differently (not col-

lapsed) if they do not share at least one page or they have identical

requests which land in different page clusters. Finally, if a matching

request R occurs in two different states (a,b) and both land to other

separate states (c,d), an edge will be added between initial states

(a,b) and graph coloring will be repeated.

Navigating the crawler. Modeling the state machine not only

depends on what, but how the requests are sent. Since each request

can cause a state change, requests need to be sent sequentially and

not concurrently. Requests are selected from the pool of links in

the last visited page. In case there are no unvisited links left, the

crawler selects a path to another page which has unexplored links.

The path selection method aims to maximize exploration of each

state before moving to another one.

3.1.3 Evaluation. While false positive rate is a main perfor-

mance metric in vulnerability scanners, assessing performance of

state-aware crawler primarily hinges on code coverage percentage.
To evaluate false positive rate, the authors modify w3af [3], a well-

known open-source vulnerability scanner, to make it state-aware.

The performance of state-aware w3af is then measured against its

original state-unaware version. This measures the improvement, if

any, of added awareness. Moreover, since the state-aware crawler

uses both POST and GET requests, the recursive mode of wget [5]
(only GET) is used as the baseline for unaware crawling. Although
the experiment reports substantial code coverage increase (up to

140.71 percent over wget) and less false positive (compared to state-

unaware w3af), the proposed solution can not performwell in Single
Page Application (SPA) where Ajax is the predominant request type

and contents are dynamically updated with each interaction. Fi-

nally, the sequential crawling assumes that the application is under

influence of one user, thus, as authors note, the proposed paradigm

cannot perform correctly in a multi user application where different

users can impact the states simultaneously.

3.2 Differential Automata Learning
While previous technique improves code-coverage and their

method of inferring state machine can be extended to applications

other than web apps, the approach is not scalable in circumstances

where the number of possible inputs is huge. Increasing the

scalability requires another form of finite state machines called

Symbolic Finite Automata (SFA) [26] which multiple state

transitions are combined and replaced by symbolic moves

(predicates). Furthermore, the emphasis of previous method was

increasing code coverage rather than detecting incorrect behavior

in response to random inputs. One popular setting for black-box

fuzzing is differential testing. In differential testing, the fuzzer

leverages differences in a series of similar application to find

semantic bugs. Since these applications are the same in terms of

functionalities but have different implementations, they can be

3

Page

/html/body/div/span/a

/user

profile.php

(id,page)

(0) (0,1) (5)

(all,sorted)

(NULL)

/html/body/div/form

/post

edit.php

(text, email, id)

(5)

APT

(/html/body/div/span/a, /html/body/div/form)

(/user, /post)

(profile.php, edit.php)

((id, page), (all, sorted), (text, email, id))

((0), (0, 1), (5), (NULL), (5)) ((5), (5, 3), (1), (YES), (10))

REDIRECT

/messages

show.php

(id)

(1)

(/html/body/table/div/a)

(/comments)

(all.php)

(sorted)

(NULL) (ASC) (DSC) (RAND)

Figure 2: Example of prefix tree (left) and corresponding Abstract Page Tree (right) [12]. Moving from the root to a leaf in
prefix tree specifies a link in a page, while in APT, it represents a page.

used as cross-referencing oracles for what is considered as

deviation of correct behavior. This section presents another

technique proposed by Argyros et al. [6], called SFADiff, to

improve black-box testing using differential automata learning.

Furthermore, it provides two attacks by leveraging discrepancies

found in differential testing.

3.2.1 Problem Description. In testing a regex-based filter or

a string sanitizer, where the number of possible inputs (alphabet

size) is large and fuzzing purpose is to find a set of inputs that

bypasses certain rules, testing all input variations is not feasible.

For instance, the alphabet size of practical regular expression which

its characters are represented by 16-bit bit-vectors (UTF-16) is 2
16
,

and classical automata are unable to efficiently model over such

alphabet size [11]. In contrast, discussed state-aware crawler (Sec-

tion 3.1) uses a small number of page links to build application’s

state machine and such approach clearly is not adaptable to the

current problem (e.g. testing string sanitizer). Therefore, classical

automata are not applicable to infer application’s state machine

where the alphabet size is considerable and another approach must

be taken into account. Moreover, having a ground truth enables

the fuzzer to guide the input generation towards samples that are

more likely to find bugs (Section 3.3). Unfortunately, such ground

truth is not available in a typical black-box setting. Nevertheless, as

discussed in Section 2, one way of overcoming this difficulty is dif-

ferential testing where the ground truth comes from the majority of

observed behaviors (or outputs) in testing similar applications. The

following subsections explain SFADiff’s solution to the described

problem.

3.2.2 SFA Learning. Symbolic Finite Automata (SFA) solve the
alphabet size problem by combining multiple state transitions and

replacing them with a predicate, which drastically reduces the num-

ber of transitions between states. SFADiff uses automata learning

which entails active learning through querying a program (as a

black-box) and comparing inputs and outputs to derive a SFAmodel

of the program. Automata learning employs two type of queries to

learn an exact model of the automaton:membership and equivalence
query. Suppose an unknown automatonM belongs to a program and

its accepted language is L(M). The learning algorithm is allowed

to submit a string s as a membership query and obtain the result

whether s ∈ L(M). Similarly, the algorithm can submit a hypoth-

esis H as a finite automaton through a single equivalence query

and check whether L(H) = L(M). In case that L(H) , L(M),
a counterexample will be returned in which the algorithm uses

to refine the obtained model. Even though equivalence query, in

abstract, is a single membership query, in practice these queries

are implemented by exhaustive search for finding counterexam-

ples. Thus, reducing equivalence queries can significantly decrease

the overhead of automata learning. SFADiff leverages model boot-

strapping to speed up the learning process. The intuition behind

bootstrapping lies in the assumption that different versions of a

program share certain parts in the model, thereby by learning an

old model and incrementally improving it, the learning algorithm

is able to derive the correct model with less equivalence queries.

SFADiff uses SFA learning algorithm presented in [7] to efficiently

implement equivalence queries and bootstrapping to attain the

SFA-based model of a (black-box) program.

Differential SFA testing. While having a model representation

for a program improves understanding of the program internals

to a certain extent, detecting bugs requires an oracle to define the

expected correct behavior. In absence of such oracle, SFADiff tests

multiple programs in a differential testing setting. In this setting,

programs with similar functionalities but different implementations

are selected and their models are learned using the SFA learning

technique. As opposed to a typical black-box differential testing

method which looks for differences in the inputs/outputs, SFADiff

looks for model discrepancies. After learning SFAmodel of each pro-

gram, intersection of models are computed and differences between

models are extracted using the following intuition: if processing an

input by product automaton (intersection) of two models results

in a state in which its corresponding states in each model have

different labels (e.g. input in one automaton reaches a final state, in

the other does not), the input is a candidate for the difference and

the corresponding state in product automaton is a point of exposure.
However, before reaching such conclusion, the input must be tested

with the actual program for its correctness to ensure that it is not

caused by model inaccuracy. If the input is a false positive, which

means that the program’s model and the program does not agree on

the same output, it is then utilized as a counterexample for refining

the model; otherwise, it is collected for analyzing the root cause.

Root cause analysis. After collecting points of exposure, those

with matching simple paths (no loops) are classified as the root

4

cause of a discrepancy. In other words, if multiple inputs are de-

tected that cause discrepancies, their simple (execution) path is

traced in the corresponding SFA model and the ones that start from

the same initial state and end in the same target state are grouped

and labeled as the root cause. This categorization allows better un-

derstanding of the root cause considering the circumstance which

the source code of the program is not given. This section further

explores how discrepancies between models can be exploited in

two forms of attacks.

SFADiff covers both cases where two programs or two sets of

programs are differentially tested. Suppose two sets of programs

I1 = {P1, P2, ..., Pn } and I2 = {P1, P2, ..., Pm } are given and each

program’s output is a bit b ∈ {0, 1}. Differential analysis attempts

to find (a set of) inputs s such that:

∃b ∀P1 ∈ I1, P1(s) = b ∧ ∀P2 ∈ I2, P2(s) = 1 − b

Such set of inputs can be exploited in the following attacks:

a Evasion Attack. In a simple setting where two programs such

as a Web Application Firewall (WAF) and an HTML/Javascript

parser of a browser are differentially tested, each application de-

cides whether an input string is an executable Javascript: the WAF

must block Javascript execution to prevent XSS attacks (Section 2),

but the browser’s HTML/Javascript parser function is to accept

and execute a (Javascript) string. Regardless of the outputs, the

underlying parsing logic is the same in both applications since

they both determine the executability of an input, thereby input

strings that are accepted by browser’s HTML/Javascript parser but

are not flagged as malicious by WAF can eventually evade the fire-
wall. Figure 3 depicts inferred SFA models of PHPIDS 0.7 parser

(WAF) and Google Chrome’s HTML/Javascript parser by SFADiff.

As an illustration, processing substring "=-a" of string "<p onclick=-

a()></p>" reaches the final state (qc
3
) in Google Chrome’s parser

(executable) while it returns to the initial state (q
p
0
) in PHPIDS 0.7

(not malicious).

b Application Fingerprinting. Given a set of known applications
I = {P1, P2, ..., Pn } and an unknown (black-box) target application

Pt , application fingerprinting aims to pinpoint P ∈ I where Pt = P
by only querying Pt . SFADiff utilizes differences of programs (I) as

their unique fingerprints which later serve as distinguishing factors

in application fingerprinting. SFADiff’s fingerprinting technique

has two main steps: 1) building a fingerprint tree and 2) searching

for a program in the fingerprint tree. Two versions of a finger-

print tree are proposed by SFADiff. The simpler version selects

two arbitrary programs from I at each iteration, obtains their dis-

tinguishing factor (strings), and stores the strings in a tree node.

Next, it passes (I − {rejected proдram}) to the left subtree and

(I − {accepted proдram}) to the right subtree and recursively does

the same steps on the remaining programs till only one program

is in each leaf. The complex version follows the same approach,

but instead of comparing two programs, it compares and stores

the differences of two program subsets at each node where the

k program subsets are defined as Is = {I1,I2, ...,Ik }. Therefore

during the fingerprint search, the simple version eliminates one

program at each level and the target application can be identified by

sending |I | −1 queries, whereas the complex version can locate the

q
p
0

start q
p
1

q
p
2

x < {=}

x ∈ {=}

x < \w

x ∈ \w

true

qc
0

start qc
1

qc
2

qc
3

x < {=}

x ∈ {=}

x < {; ,−, !} ∪ \w

x ∈ {; ,−, !}

x ∈ \w

x < \w

x ∈ \w

true

Figure 3: Simplified version of PHPIDS 0.7 parser (top) and
Google Chrome parser (bottom) [6].

target program with (k − 1) logk |I | queries (e.g. log |I | for k = 2).

While the number of queries is reduced, the complex fingerprint

tree requires more computation time for building the tree, and as

authors suggest, it is suitable for an attacker who can invest more

time in offline computation.

3.2.3 Evaluation. SFADiff’s performance is measured in three

criteria: 1) effectiveness of bootstrapping, success rate of 2) finger-

printing and 3) evasion attack. To assess bootstrapping performance,

the number of equivalence queries are measured in learning the

SFA model of 9 regular expression filters (2 versions of ModSecurity

and 7 versions of PHPIDS) with and without bootstrapping tech-

nique. Even though the reported result illustrates 50× reduction in

number of equivalence queries, the number of membership queries

shows an increase of 1.15×. The authors claim that equivalence

queries are much slower than membership queries in general, and

thereby the result shows a significant improvement. In another ex-

periment, the effectiveness of fingerprinting technique is evaluated

by inferring and comparing the SFA model of TCP implementa-

tions in Linux, OSX and FreeBSD. Having extra number of states in

Linux and FreeBSD (for handling erroneous TCP packets) compared

to OSX as well as returning different outputs to the same input

samples, act as distinguishing factors in operating system finger-

printing. To measure success rate of evasion attack, the Javascript

parsing implementation of a WAF (PHPIDS) is differentially tested

and cross-checked against a browser (Google Chrome). Figure 3

demonstrates the learned SFA models. As discussed previously,

since Javascript parsers are structurally similar, if there is such a

string which gets accepted by both models, it creates an evasion

attack against the WAF. "=!a", "=-a" and "=;a" are reported as by-

passing PHPIDS which are then classified under one root cause

using the discussed automated root cause analysis technique.

Ordinarily, differential testing is a suboptimal approach since it

relies on the majority vote of outputs (behavior) to fill the void of an

oracle. In particular, a semantic bug caused by an incorrect design

could prevail in the successive implementations without creating

discrepancies. Nevertheless, SFADiff takes a different approach and

looks for model differences rather than mere outputs. Moreover,

automata learning to some extent converts black-box testing to

a grey-box analysis which increases the amount of knowledge

regarding the internals and changes the inherent lack of knowledge

assumption in black-box fuzzing. While SFADiff’s technique can

5

be defined as domain-independent, the fact that SFA learning is

applicable to certain applications such as regex based filters and

string sanitizer makes the approach limited to specific domains.

The following section expounds a domain-independent method in

black-box testing.

3.3 Domain Independent Differential Testing
As detailed, both previous approaches attempt to build a model

of black-box application from inputs and outputs. Nonetheless,

they are not completely domain agnostic. The state-aware crawler

(Section 3.1) leverages prior knowledge of HTML page link structure

and input-output-format (HTTP request/responses) to infer web

application’s state machine. While SFADiff (Section 3.2) is domain-

independent, its learning technique is only pertinent to applications

which can be modeled by SFA learning. Therefore, they are not

adaptable to other domains. This section presents another approach

suggested by Petsios et al. [21] that focuses on evolutionary input

generation to push differential black-box testing further towards

being domain agnostic. Although the proposed paradigm supports

grey-box and black-box differential testing, the emphasis here is

on the black-box aspect and the grey-box detail is provided for

comparison.

3.3.1 Problem Description. Semantic bugs are the dominant

root cause of software bugs compared to memory-related bugs [24].

They are very hard to detect since their deviation of correct be-

havior does not result in a crash. Moreover, merely expanding

fuzzer’s code-coverage does not guarantee an increase in bug de-

tection. For instance, in monolithic code-coverage technique which
code-coverage percentage is the main drive, inputs which generate

different behaviors, but cover less code percentage will be ignored.
Therefore, monolithic code-coverage is not an adequate metric,

especially in semantic discrepancy testing where understanding

application behavior plays a critical role. Essentially, finding seman-

tic bugs requires domain specific knowledge, manual inspection of

the program as well as an oracle which defines the correct behav-

ior. This is where differential testing shines, since such oracle, or

any knowledge about the application, is not available in black-box

testing.

As seen in Section 3.2, differential testing uses the majority vote

as the oracle’s answer to "What should be the program’s behavior to a
specific input?". However, existing differential testing methods face

limitations in finding semantic bugs. First, they follow unguided
testing method which does not include previous outputs in guiding

future input generation. This results in probing the program with

a large number of random inputs and hoping to find a single bug.

Second, they rely on specific input format which cannot be adapted

to other domains. Csmith [27] is an example of domain specific

differential testing tool which uses randomized test-case to fuzz

C compilers. The rest of this section is dedicated to describing

NEZHA [21], a domain-independent differential testing technique,

and its applications.

3.3.2 Evolutionary Input Generation. NEZHA uses a novel

metric called δ -diversity to quantify behavior asymmetries caused

by an input in differential testing. In other words, in differential

testing where a series of similar applications is being tested and

Algorithm 1 DiffTest takes applications A, collection of inputs I

and n generations as arguments and returns discrepancies of tested

applications. GlobalState specifies guidance engine method [21].

1: procedure DiffTest(I,A,n,GlobalState)
2: discrepancies = 0 ;reported discrepancies

3: while дeneration ≤ n do
4: input = RANDOMCHOICE(I)

5: mut_input =MUTATE(input)
6: дeneration_paths = 0 ;for path δ -diversity
7: дeneration_outputs = 0 ;for output δ -diversity
8: for app ∈ A do
9: app_path,app_outputs = RUN(app,mut_input)
10: дeneration_paths ∪ = {app_path}
11: дeneration_outputs ∪ = {app_outputs}
12: end for
13: if NEWPATTERN(дeneration_paths,

дeneration_outputs,
GlobalState) then

14: I ← I ∪mut_input
15: end if
16: if IsDISCREPANCY(дeneration_outputs) then
17: discrepancies ∪ =mut_input
18: end if
19: дeneration = дeneration + 1

20: end while
21: return discrepancies
22: end procedure

observed for behavior asymmetries, this metric aims to capture the

diversity of those asymmetries. Such metric is further used to direct

input mutation towards exploring parts of the application which

exhibit more diverse behavior. As monolithic code-coverage lacks

in capturing divergent behavior, δ -diversity is the key metric in

NEZHA for refining input generation.

NEZHA’s main algorithm rests on how inputs are generated. As

discussed In Section 3.1, the state-aware crawler selects upcoming

HTTP requests in such a way to maximize exploration of current

state before leaving the state. Similarly, SFADiff (Section 3.2) drives

input generation towards refining inferred automaton and minimiz-

ing the difference of the obtained model from its target application.

In the context of differential fuzzing and NEZHA, semantic bugs

are more likely to be found when the behavior asymmetries are

maximized. Therefore, NEZHA’s guidance engine generates upcom-

ing inputs in the direction of maximizing δ -diversity. Computing

δ -diversity can vary based on information availability (of testing

strategy). The followings describes the role of δ -diversity in the

guidance engine of grey-box and black-box testing.

Path δ -diversity (grey-box). In the context of Control Flow Graph

(CFG), the execution path is defined as the sequence of accessed

CFG edges as a result of executing a specific input. Since infor-

mation regarding the execution path is accessible in a grey-box

setting, the guidance engine primarily aims to generate inputs in

a direction to explore as many execution paths as possible. Corre-

spondingly, when multiple programs are examined in a differential

testing setting, the execution path representation must be able to

6

capture unique execution paths for each program. As discussed in

Section 3.3.1, global monolithic code-coverage lacks in quantifying

behavior asymmetries. NEZHA has two representation methods

with different granularity to tackle this problem: coarse and fine. In
the first method, the total number of unique accessed edges for each
program is stored in a tuple called Path Cardinality. The size of the
tuple is equal to the total number of programs in the differential test-

ing, and each entry belongs to one program. For instance, given a set

of P programs and a set of I inputs, cardinality tuple PCP,i in re-

sponse to input i ∈ I is ⟨|pathp1,i |, |pathp2,i |, ..., |pathp |P |,i |⟩which
each program pk ∈ P. Finally, when all inputs are tested, coarse
path δ -diversity is obtained from PDCoarse = |

⋃
i ∈I {PCP,i }|.

However, it is unclear which edges are accessed since the emphasis

of coarse method is the total number of unique accessed edges. In

contrast, fine technique stores sets of unique edges under execution
of each input. Put differently, instead of counting total number

of accessed edges, fine method stores accessed edges of each pro-

gram as a set (with no duplicates). Thus, the final PDP,i tuple for
fine method is ⟨path_setp1,i ,path_setp2,i , ...,path_setp |P |,i ⟩ which
path_setp,i is a set of unique accessed edges of program pk ∈ P
under execution of input i ∈ I. Consequently, fine path δ -diversity
is computed from PDF ine = |

⋃
i ∈I {PDP,i }|.

Output δ -diversity (black-box). A Black-box fuzzer has a limited

perspective about the application’s internal such as path execu-

tion, thereby δ -diversity must be computed from information other

than the path execution. As discussed in Section 2, input and out-

put information are available to the fuzzer. NEZHA measures δ -
diversity using received errors under execution of a specific input.

Given a set of programs P and a set of test inputs I, executing

input i ∈ I on each program pk ∈ P results in a tuple of pro-

gram outputs ODP,i = ⟨op1,i ,op2,i , ...,op |P |,i ⟩. Accordingly, input
generation uses |

⋃
i ∈I {ODP,i }| as the output δ -diversity for the

guidance of creating upcoming input samples to maximize diversity

of outputs. Using δ -diversity as a tunning parameter allows con-

trolling input generation without taking input format into account.

However, as the diversity quantification in output δ -diversity relies
on the observed differences between the outputs (errors, messages,

etc.), it is not useful in testing applications where outputs are not

adequately expressive or diverse. Therefore, granularity of outputs

must also be considered.

NEZHA’s main algorithm is shown in Algorithm 1. It describes

evolutionary testing and how inputs are evolved using the guidance

engine. The algorithm runs for n generations and at each gener-

ation, an input is randomly selected from the input collection I

and mutated. The mutated input is then run against all applica-

tions (A) and corresponding outputs are collected. If the output

is a new unobserved pattern (using δ -diversity concept), the mu-

tated input will be added to the input collection for the upcoming

tests. GlobalState defines δ -diversity type (e.g. output δ -diversity
is GlobalState .UseOD). Finally, the mutated input is added to the

discrepancy set if it is accepted by at least one application and

rejected by at least another application. When n generations of

testing are done, the discrepancy set is returned as the final result.

NEZHA uses delta-debugging [29] for analyzing root cause of

discrepancies which requires keeping both the original input and

the mutated one, as the comparison of inputs and their mutated

version helps in identifying the cause. It should be noted that the

mutation strategy selects predefined mutation techniques randomly

(e.g. combining random substrings), and as the authors note, it is

not fit for differential testing and requires improvement.

3.3.3 Evaluation. The experiments aim to evaluate NEZHA’s

performance in three parts. First, its ability to find discrepancies.

Then, its performance compared to other domain-specific and

domain-agnostic fuzzers, and third, to examine its guidance engine

performance compared to each other. The first differential fuzzing

is done in three areas: SSL libraries, file parsers, and PDF viewers.

Overall, 778 unique discrepancies are found and the most

significant portion belongs to testing six different SSL libraries

(764) which, as authors explain, stems from finer granularity of

error outputs as well as larger number of tested applications

(compared to two file parsers and three PDF viewers). Although

the authors identify the occurrence of 8 errors and crashes, it is

not clear how many of the remaining discrepancies belong to

semantic bugs. In the second set of experiments, the number

of found discrepancies are 52, 27 and 6 times more than

Frankcerts [9](domain-specific), Mucerts [10](domain-specific) and

American Fuzzy Loop [28](domain-agnostic) respectively, which

shows a promising improvement. Finally, in a similar setup of

testing six different SSL libraries, output δ -diversity (black-box),

path δ -diversity (grey-box), and global code-coverage are run

separately and results are compared. Reported results show 30%

improvement in black-box, and 22.75% improvement in grey-box

over global code-coverage. Seemingly, in a differential testing

context, if the outputs are sufficiently diverse and expressive,

black-box testing with adaptive input generation can perform to

the same extent as grey-box testing. This is illustrated in another

experiment where a subset of error code is returned (where errors

are less diverse) which shows a drastic reduction in performance

of output δ -diversity.
As reported, tracking δ -diversity throughout testing allows driv-

ing input selection towards exploring parts of the application which

would have been ignored had the fuzzer merely followed a mono-

lithic code-coverage. However, the notion of differential diversity

relies on the majority of tested programs to perform correctly as

intended, otherwise discrepancies are erroneously labeled as bugs

or bugs are simply overlooked and considered as correct behavior.

Moreover, as authors clarify, mutation methods used in NEZHA

are not optimized for differential testing and further optimization

is required. Finally, while automatic bug localization and reporting

are included in NEZHA, they may not scale well as the number of

programs increases and manual analysis is still needed.

4 DISCUSSION
Taking a wider view on the matter, comparison of described tech-

niques provides further evaluation on the subject as a whole. While

discussed methodologies share a similar goal, the nuances of how

models are derived and what information is required beforehand

can differentiate techniques. Moreover, since the primary advantage

of black-box fuzzing is it is not application specific, it is therefore im-

perative to juxtapose the techniques and discuss their adaptability

in other domains.

7

Domain dependency. Even though the state-aware vulnerability

scanner (Section 3.1) is (server-side) platform-agnostic, it relies on

a specific input format to interact with the back end server. The

input format is also tied to page link structure as the construction

of Abstract Page Tree and clustering similar pages utilize link tu-

ples and links which follow a specific standard. In contrast, NEZHA

(Section 3.3), regardless of input format, quantifies a notion of diver-

sity in the outputs (δ -diversity) and uses such measure as an input

generation guidance. The achieved results by NEZHA illustrate that

evolutionary testing can reduce input format dependency, though

the context of differential testing and using cross-referencing ora-

cle must also be taken into account. SFADiff (Section 3.2) takes an

in-between approach; while the input structure is relatively domain-

independent, the category of target programs that are learnable
by SFA is specific and limited (e.g. regex based filters). Despite the

differences of reliance on input format, the primary goal of all tech-

niques is reducing code-dependency, increasing adaptability even

in particular areas, while not losing performance.

On the contrary, output format dependency has less impact on

adaptability since discrepancies in the output is considered as the

distinguishing factor (of divergent behavior), especially when mul-

tiple programs are differentially tested. The state-aware crawler

compares the responses of identical requests, regardless of the for-

mat, to infer when the state of the application changes. In a similar

manner, NEZHA guides input generation to diversify outputs since

heterogeneity is a key factor in its ability to increase code-coverage.

Actually, as noted in Section 3.3, its performance depends on di-

verse and expressive outputs. While SFADiff’s outputs, in particular

the counterexamples, play an important role in SFA learning, its

differential testing performance is determined by observed output

differences (e.g. different states).

Root cause analysis. Locating root cause of observed discrepan-

cies in a black-box differential testing setting is difficult. SFADiff’s

root cause analysis is able to group similar causes automatically, as

seen in Section 3.2, whereas NEZHA’s black-box guidance engine

requires additional manual analysis. SFADiff’s promising approach

in bug localization is a result of learning an accurate model of a

black-box. Thus, tracing paths in such model is analogous to fol-

lowing path execution in the application which is then used to

locate the bug initiator. The state-aware vulnerability scanner does

not specify a debugging strategy as it merely attempts to increase

code-coverage.

Limitations. The following paragraph summarizes discussed lim-

itations throughout the paper. The state-aware crawler underper-

forms in Single Page Applications and multi-user web applications

where multiple users can affect application’s internal state. In order

for state-aware crawler to successfully infer a state machine of Ajax-

based web application (or Single Page Application), the authors

recommend converting Ajax responses (JSONs) into representative

static pages. Furthermore, NEZHA’s input mutation strategy, which

uses up to five predefined operators, requires optimization for a

differential testing setting. Finally, in general, bug localization is

a difficult task in black-box differential testing due to the large

number of generated discrepancies and opaqueness of execution

paths, and as explained by authors, it needs further improvements

in NEZHA.

Differential testing vs. state-aware vulnerability scanner. While

NEZHA and SFADiff are not comparable to the state-aware vul-

nerability scanner as their contexts are not the same, few points

are worth mentioning. Typically, differential testing is performed

in a setting where the functionality of applications (that are being

tested) are known, otherwise observed differences do not provide

any additional information. However, such setting is not applicable

while testing a target application on the web. As noted in Section 3.2,

most gain in differential testing comes from offline computation,

specially in generating fingerprints. Therefore, differential fuzzing

techniques are intrinsically different than what is proposed by

state-aware vulnerability scanner, though they may share a similar

goal. Despite the differences, each mentioned technique considers

a certain degree of knowledge (assumptions) about the application:

the state-aware crawler takes input format into account, SFADiff’s

adaptability is dependent on the application type, and NEZHA’s

success (in black-box guidance engine) is tied to having diverse and

expressive outputs. These assumptions play key parts in designing

an efficient black-box fuzzer. Ultimately, all three methods follow

the same objective: increasing observability. This not only indicates

the imperative role of understanding application’s internal states,

but the viability of such inference by mere input/output analysis.

5 CONCLUSION
This paper presents a description of three different techniques for

improving black-box testing. It describes how eachmethod attempts

to increase the observability and reduce code-dependency by means

of building a representative model through analyzing input/output

for a given black-box. It then provides a comparison of presented

methods, their strength and weaknesses, followed by a discussion

on their limitations and possible future optimization for interested

researchers.

REFERENCES
[1] Cross-site Scripting. https://www.owasp.org/index.php/Cross-site_Scripting_

(XSS). (Accessed: 2018-02-22).

[2] Stored Cross site scripting. https://www.owasp.org/index.php/Testing_for_

Stored_Cross_site_scripting_(OTG-INPVAL-002). (Accessed: 2018-02-22).

[3] w3af. https://github.com/andresriancho/w3af/. (Accessed: 2018-02-22).

[4] Web Application Firewall. https://www.owasp.org/index.php/Web_Application_

Firewall. (Accessed: 2018-02-22).

[5] Wget. https://www.gnu.org/software/wget/. (Accessed: 2018-02-22).

[6] Argyros, G., Stais, I., Jana, S., Keromytis, A. D., and Kiayias, A. Sfadiff: Auto-

mated evasion attacks and fingerprinting using black-box differential automata

learning. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), ACM, pp. 1690–1701.

[7] Argyros, G., Stais, I., Kiayias, A., and Keromytis, A. D. Back in black: towards

formal, black box analysis of sanitizers and filters. In Security and Privacy (SP),
2016 IEEE Symposium on (2016), IEEE, pp. 91–109.

[8] Bau, J., Bursztein, E., Gupta, D., and Mitchell, J. State of the art: Automated

black-box web application vulnerability testing. In Security and Privacy (SP),
2010 IEEE Symposium on (2010), IEEE, pp. 332–345.

[9] Brubaker, C., Jana, S., Ray, B., Khurshid, S., and Shmatikov, V. Using

frankencerts for automated adversarial testing of certificate validation in ssl/tls

implementations. In Security and Privacy (SP), 2014 IEEE Symposium on (2014),

IEEE, pp. 114–129.

[10] Chen, Y., and Su, Z. Guided differential testing of certificate validation in ssl/tls

implementations. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (New York, NY, USA, 2015), ESEC/FSE 2015, ACM, pp. 793–

804.

[11] D’Antoni, L., and Veanes, M. The power of symbolic automata and transducers.

In CAV’17 (July 2017), Springer.

[12] Doupé, A., Cavedon, L., Kruegel, C., and Vigna, G. Enemy of the state: A

state-aware black-box web vulnerability scanner.

8

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://github.com/andresriancho/w3af/
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.gnu.org/software/wget/

[13] Doupé, A., Cova, M., and Vigna, G. Why johnny can’t pentest: An analysis of

black-box web vulnerability scanners. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (2010), Springer, pp. 111–
131.

[14] Felmetsger, V., Cavedon, L., Kruegel, C., and Vigna, G. Toward automated

detection of logic vulnerabilities in web applications. In Proceedings of the 19th
USENIX conference on Security (2010), USENIX Association, pp. 10–10.

[15] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-Y. Securing

web application code by static analysis and runtime protection. In Proceedings of
the 13th international conference on World Wide Web (2004), ACM, pp. 40–52.

[16] Jovanovic, N., Kruegel, C., and Kirda, E. Static analysis for detecting taint-

style vulnerabilities in web applications. Journal of Computer Security 18, 5 (2010),
861–907.

[17] Khan, M. E., Khan, F., et al. A comparative study of white box, black box and

grey box testing techniques. Int. J. Adv. Comput. Sci. Appl 3, 6 (2012).
[18] McKeeman, W. M. Differential testing for software. Digital Technical Journal 10,

1 (1998), 100–107.

[19] Pargas, R. P., Harrold, M. J., and Peck, R. R. Test-data generation using genetic

algorithms. Software Testing, Verification and Reliability 9, 4 (1999), 263–282.
[20] Pellegrino, G., and Balzarotti, D. Toward black-box detection of logic flaws

in web applications. In Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2014).

[21] Petsios, T., Tang, A., Stolfo, S., Keromytis, A. D., and Jana, S. Nezha: Efficient

domain-independent differential testing. In Security and Privacy (SP), 2017 IEEE
Symposium on (2017), IEEE, pp. 615–632.

[22] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., and Bos, H. Vuzzer:

Application-aware evolutionary fuzzing. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2017).

[23] Shin, Y., Meneely, A., Williams, L., and Osborne, J. A. Evaluating complexity,

code churn, and developer activity metrics as indicators of software vulnerabili-

ties. IEEE Transactions on Software Engineering 37, 6 (2011), 772–787.
[24] Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., and Zhai, C. Bug characteristics in

open source software. Empirical Software Engineering 19, 6 (2014), 1665–1705.
[25] Veanes, M. Applications of symbolic finite automata. In International Conference

on Implementation and Application of Automata (2013), Springer, pp. 16–23.
[26] Veanes, M., De Halleux, P., and Tillmann, N. Rex: Symbolic regular expres-

sion explorer. In Software Testing, Verification and Validation (ICST), 2010 Third
International Conference on (2010), IEEE, pp. 498–507.

[27] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and understanding bugs in

c compilers. In ACM SIGPLAN Notices (2011), vol. 46, ACM, pp. 283–294.

[28] Zalewski, M. AFL. http://lcamtuf.coredump.cx/afl/. (Accessed: 2018-02-22).

[29] Zeller, A. Yesterday, my program worked. today, it does not. why? In ACM
SIGSOFT Software engineering notes (1999), vol. 24, Springer-Verlag, pp. 253–267.

APPENDIX
This section provides the formal definitions of Deterministic Finite

Automata, Symbolic Finite Automata, and Symbolic Finite Trans-

ducers.

Deterministic Finite Automata. A Deterministic Finite Automaton
M is a tuple (Q, Σ,δ ,q0, F) where Q is a finite set of states, Σ is a

finite set called alphabet, δ : Q × Σ → Q is a transition function,

q0 ∈ Q is the initial state, and F ⊆ Q is a set of accept states. The

accepted language overM is denoted by L(M) and contains all the

strings which each starts from q0 and ends in a state in F [6].

Symbolic Finite Automata. A Symbolic Finite Automaton M is a

tuple (Q,q0, F ,P,∆) where Q is a finite set of states, q0 ∈ Q is the

initial state, F ⊆ Q is a set of final states, P is the predicate family,

and ∆ ⊆ Q × P ×Q is a finite set of transitions [6].

Symbolic Finite Transducers. A Symbolic Finite Transducer is a
a tuple (Q,q0, F ,A,∆) where Q is a finite set of states, q0 ∈ Q is

the initial state, F ⊆ Q is a set of final states,A is an effective label

algebra, and ∆ ⊆ Q × Ψ × Λ∗ ×Q is called transitions. A transition(
p,φ, ¯f ,q

)
in ∆ which can be shown as p

φ/ ¯f
−−−→ q where

¯f is the

output function, indicates if an input symbol a in a state p satisfies

guard φ, it will produce a sequence of outputs using ¯f (a) and move

onto state q [11].

9

http://lcamtuf.coredump.cx/afl/

	1 INTRODUCTION
	2 Definitions
	3 TESTING METHODOLOGIES
	3.1 State-Aware Web Vulnerability Scanner
	3.2 Differential Automata Learning
	3.3 Domain Independent Differential Testing

	4 Discussion
	5 Conclusion
	References

